
Proceedings of THE 2nd INTERNATIONAL CONFERENCE ON

COMPUTATIONAL PHYSICS, Beijing, China, pp 522-525 (September 1993)

Lattice-Gas Automata on Parallel Architectures

Jeffrey Yepez
US Air Force, Phillips Laboratory, Hanscom Field, Massachusetts, USA

Guy P. Seeley∗

Radex Corporation, Bedford, Massachusetts, USA

George Mou
Computer Science Department, Brandeis University, Waltham, Massachusetts, USA

September 12, 1993

Abstract

Conserved Navier-Stokes dynamics can be exactly simulated by lattice
gas methods. This work studies several implementation issues of lattice
gas automata on state-of-art parallel computer systems. We present per-
formance results for the hexagonal LGA lattices on CAM-8 mesh, CM-5
fat-tree, and KSR1 hierarchical rings network topologies. The benchmarks
range from 200 million to 500 million site updates per second.

I. Introduction

We have implemented lattice-gas automata (LGA) on three parallel archi-
tectures: MIT’s CAM-8, Thinking Machine Corporations’s CM-5, and Kendall
Square Research’s KSR1. For a 16-bit LGA our main findings are: (1) the
CAM-8 appears to be much more efficient than the other two parallel architec-
tures, delivering 25 million sites update per second per module; (2) the CM-5
can simulate larger lattices due its much larger memory sizes but can only de-
liver about 1 million sites update per second per node; and (3) the KSR1 can
simulate about the same size lattice as the CM-5 and can deliver about 2 mil-
lion sites update per node. Eight CAM-8 nodes, each clocked at 25 MHz with
16 custom memory management chips controlling 222 16-bit sites (8 Mbytes
DRAM) using double buffered look-up table (2 Mbytes SRAM), are connected
by a 3D mesh. 512 CM-5 nodes, each with a 32 MHz SPARC processor and
four 16 MHz vector units with 32 Mbytes, are connected by a fat-tree network.
128 KSR1 nodes, each with a 64-bit 20 MHz processor with 32 Mbytes, are

∗Supported by US Air Force Contract No. F19628-93-C-0023.

1



connected by a hierarchical ring. For the CM-5 and KSR1 machines the inter-
processing communication cost is small relative to the internal streaming and
collision computations for sufficiently large lattices. This suggests the relatively
low communication bandwidth of the two commercial machines impose no se-
rious performance degeneration. We also find a linear speed-up with increasing
number of processors given large lattice sizes (e.g. 2k×1k lattice or larger).

LGA is a new approach to hydrodynamic fluid simulations[1]. It has found
application to multiphase systems, reaction-diffusion systems, thermohydrody-
namics, and flow through porous media. Particles, with mass m, propagate
on a spacetime lattice with N spatial sites, unit cell size l, time unit τ , with
speed c = l/τ . A particle’s state is completely specified at some time, t, by
specifying its position on the lattice, x, and its momentum, p = mcêa where
lattice vector are êa for a = 1, 2, . . . , B. The particles obey Pauli exclusion
since only one particle can occupy a single state at a time. The total number of
configurations per site is 2B . The total number of single particle states available
in the system is BN . The lattice-gas cellular automaton equation of motion is
n′

a(x + lêa, t + τ) = na(x, t) + Ωa(~n(x, t)), where the particle occupations and
collisions are denoted by na andΩa, respectively.

The spatial coordinates of the lattice sites may be expressed as follows
xij =

(√
3

2 j, i − 1
2 mod 2j

)
where i and j are rectilinear indices which spec-

ify the data memory array location used to store the lattice-gas site data.
Given a particle at site (i, j), it may be shifted along vector ~r = rêa to a re-
mote site (i′, j′)a by the following mapping:

(
i + r+1

2 − mod2j mod 2r, j ∓ r
)
1,4,(

i − r
2 − mod2j mod 2r, j ∓ r

)
2,5, (i ∓ r, j)3,6. All of our implementations use

these streaming relations for address computations. In these streaming rela-
tions, the modulus operator is base 2 because a two-dimensional hexagonal
lattice embedded into a square three-dimensional mesh is pleated.

II. Implementations on the CAM-8, CM-5, and KSR1

The desktop CAM-81 produced by Margolus and Toffoli of MIT[2] directly
implements in hardware lattice-gas data streaming and collisions. The node-to-
node communication architecture is a cartesian three-dimensional mesh. Each
site of the lattice has a “pile” of bits (a multiple of 16). Each bit of the pile,
or each bit plane, is “kicked” through the lattice in any directions. The spec-
ification of the x,y, and z components of the kicks for each bit plane exactly
defines the lattice. The kicks determine all the global permutations of the data.
Local permutations of data occurs within the bit piles are computed in double-
buffered SRAM look-up tables (LUTs) that store all possible physical events
with a certain input and output configurations. The width of the CAM-8 LUTs
are 16-bits. This is a reasonable width satisfying the opposing constraints of
model complexity versus memory size limitations for the SRAM. Site permuta-
tions of data wider than 16-bits must be implemented in several successive LUT

1The first 8-module CAM-8 prototype was operational in the fall of 1992.

2



passes. The CAM-8 has built-in 25-bit event counters for real-time measure-
ments. We have used this feature to do real-time coarse-grain block averaging of
the LGA number variables and to compute the components of the momentum
vectors for each block. The data size of the coarse-grained data is sufficiently
small that it can be transferred back to the front-end host for graphical display
as an evolving flow field within an X-window.

In CAMForth, we implemented a two-speed hexagonal LGA with a rest par-
ticle, including gravitational forcing, free-slip and no-slip boundaries which may
be oriented horizontally, vertically, or inclined ±60◦, and heating and cooling
sites to model temperature controlled boundary surfaces. This has been en-
coded within a single LUT. The ability of encoding such complex dynamics
within 16-bits is one of the remarkable aspects of the LGA formalism in terms
of efficient memory use affording us the ability to do flash updating from pre-
stored collision tables. 98% of the 216 entries in the collision tables are used in
this model.

The Thinking Machines Corporations’s CM-5 is a parallel computer that can
contain up to 16384 processing nodes.2 These processing nodes are all connected
via a “fat-tree” communications net providing general inter-node communica-
tion. A front-end host, a modified SUN workstation, controls these processing
nodes. A SPARC processor on each node issues instructions to the vector units
and performs most bookkeeping tasks while the vector units perform arithmetic
and logical operations on the data. Each vector unit has a peak rate of 32 million
64-bit ops (floating point or integer) for a combined total of 128 Mops/node.
Each node’s memory is divided into 8 Mbyte banks, one for each vector unit.
Each vector unit has its own independent 128 Mbyte/sec path to memory for a
combined memory bandwidth of 512 Mbyte/sec for each node. The DoD CM-
5 at the Army High Performance Computing Research Center in Minneapolis,
Minnesota contains 544 nodes for a total of 16 Gbytes of memory and 64 Gops
of peak processing speed.

We have implemented an LGA simulator on the CM-5 using the high level
parallel C*-language and the low-level C/CMMD/DPEAC language. In C*, the
geometry of the problem is specified at the onset by defining the data structure’s
shape. This is usually a D-dimensional array with a certain size in each dimen-
sion. The shape definition defines all the needed communication topology for
the compiler. It is possible to declare Boolean shapes in C*. The partitioning of
the space between processors is handled completely by the C* compiler. Given
a certain lattice size, for example 1024×2048, with have found the performance
of the CM-5 to vary linearly with the number of processing nodes. This linear
variation is expected so long as the lattice size is sufficiently large. We did sev-
eral runs for lattice sizes 64×128, 128×256, . . . , 8192×16384. For small lattice
sizes, the performance is very poor, on the order of a million site updates per
seconds. This is because processor to processor communication bandwidth lim-
its the streaming rate. As the lattice size increases, the number of sites interior

2Currently the largest CM-5 resides at Los Alamos National Laboratory with 1024 nodes.
Our work has been done on DoD’s 544-node CM-5.

3



to the node grows and the number of sites on the partition boundary decreases.
Consequently, the site update rate continuously improves with larger lattices.
The update rate asymptotically approaches about 25 million site updates per
second for a 256-node partition. This is equivalent to approximately 100,000
site updates per processing node. The C* compiler does not appear to be very
efficient for the LGA algorithm.

In our C/CMMD/DPEAC implementation we partition the lattice into equally
sized rectangles with one node (four vector units) assigned per rectangle. The
streaming phase of the computation uses the address of each bit’s destination
in a pre-computed table. This is done so potentially complex addressing cal-
culations are performed only once during initialization. Before a site can be
updated, a communication phase must take place so each site can access all its
neighbors. Communication must take place across node and vector unit bound-
aries. The communication is done so every site has access to all its neighbor
values on one vector unit’s 8 Mbyte bank of memory. After the streaming op-
eration is complete the new site value is run through a LUT. Each vector unit
has its own copy of the LUT, so this part of the calculation is not time con-
suming, yet it consumes are large amount of memory. We have achieved update
rates of about 106 Msites/sec on a 128-node partition of the CM-5 for the FHP
gas model. We find that the longer the system is across each node the greater
the realized performance. This is due to the long system size across each node
increases the fraction of sites in the interior of each vector unit and these sites
do not need to communicate with sites on adjacent vector units or processing
nodes.

The KSR1 is a parallel computer based on a shared-memory model. Sets of
32 processors are connected by a ring network with a communication bandwidth
of 1GByte/sec between each set. Sets of rings of 32 processors are in turn
connected in a ring at the next level. The processors are clocked at 20MHz. The
peak performance per processor is 40 Mflops. Referencing data not physically
located in one processor causes a cache miss and consequently brings in a cache
line of 128 bytes. The cost of the cache miss depends on whether the data is
located in the same ring or not and can cost up to several hundred machine
cycles. Thus, it is crucial to exploit the locality of data in programming the
KSR1.

We implemented an LGA simulator in KSR Fortran - an extension of Fortran
with parallelizing KSR directives. The hexagonal lattice is embedded is a similar
fashion to our implementation on the CAM-8 and CM-5. A m × n lattice is
partitioned into p stripes of shape n by m/p, each assigned to one processor.
The boundaries of the lattice are programmed separately and all the processors
share the work. We have benchmarked the performance in two ways: varying the
number of processors with fixed lattice size and varying the lattice size for fixed
number of processors. The results show that a) the speedup is close to linear
as we increase the number of processors and b) the per node site update rate
increases with the lattice size but slowly decreases as the number of processor
increases. The KSR1 can deliver about 2 million sites update per second per
node for large lattices.

4



III. Conclusion

The CAM-8 architecture is an elegant, arguably the best, distillation of
lattice gas dynamics that has been realized in low-cost desktop hardware. We
look forward to the construction of a larger CAM-8, with much more than eight
modules, in the near future. The CM-5 results are based on a beta version
of the software and are not necessarily representative of the full version of the
software.

JY would like to acknowledge Dr. Norman Margolus, MIT, for his extensive
collaboration on the CAMForth LGA implementation.

Research time on the Connection Machine has been supported by, or in part
by the Army Research Office, contract number DAAL03-89-C-0038 with the
University of Minnesota Army High Performance Computing Research Center.

References

[1] G.D. Doolen, “Lattice Gas Methods: Theory, Applications, and Hard-
ware”, MIT/North Holland 1991

[2] N. Margolus and T. Toffoli, Cellular Automata Machines in the collection
“Lattice Gas Methods for Partial Differential Equations”, SFI SISOC, Eds.
Doolen et al., Addison-Wesley Publishing Co., pg 219-249, 1990

5


